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Abstract 

Temporal plans permit significant flexibility in 
specifying the occurrence time of events. Plan 
execution can make good use of that flexibility. 
However, the advantage of execution flexibility 
is counterbalanced by the cost during execution 
of propagating the time of occurrence of events 
throughout the flexible plan. To minimize exe 
cution latency, this propagation needs to be very 
efficient. Previous work showed that every tem- 
poral plan can be reformulated as a dispatchable 
plan, i.e., one for which propagation to immedi- 
ate neighbors is sufficient. A simple algorithm was 
given that finds a dispatchable plan with a mini- 
mum number of edges in cubic time and quadratic 
space. In this paper, we focus on the efficiency of 
the reformulation process, and improve on that 
result. A new algorithm is presented that uses 
linear space and has time complexity equivalent 
to Johnson’s algorithm for all-pairs shortest-path 
problems. Experimental evidence conikms the 
practical effectiveness of the new algorithm. For 
example, on a large commercial application, the 
performance is improved by at least two orders of 
magnitude. We further show that the dispatch- 
able plan, already minimal in the total number 
of edges, can also be made minimal in the max- 
imum number of edges incoming or outgoing at 
any node. 

Introduction 
In a control system that distinguishes a deliberative 
layer (planner) and a reactive layer (ezecutiue) (Pell 
et al. 1997; Bonasso et ai. 1997; Wilkins et al. 
1995; Drabble, Tate, & Dalton 1996; Simmons 1990; 
Musliner, Durfee, & Shin 1993; Bresina et al. 1993), 
the function of a plan is to provide robust and effective 
directives to the executive on how to control a system 
toward desired behaviors. To be robust against un- 
certainty in the execution environment a plan must be 
flexible, Le., must specify a set of possible acceptable be- 
haviors. The executive should be able to choose among 
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such behaviors on the basis of the actual execution con- 
ditions. To be effective a plan must be localized, i.e., it 
must be possible for the executive to locally process the 
constraints in the plan and quickly decide which action 
to  execute next. 

To obtain flexibility one can explicitly represent in 
the plan the relationship between a set of plan param- 
eters as a network of constraints. When receiving the 
constraint network, the executive will iteratively pick 
one variable and decide which value to  assign to it. To 
make this decision the executive needs to propagate to 
the current variable the consequence of the value as- 
signments that have already been made. 

Relying on explicit constraint propagation during ex- 
ecution can be costly. In fact, the greater the time 
needed to propagate through the constraint network, 
the higher will be the total time needed by the exec- 
utive to decide when and how to execute a task. It 
can be shown that this decision time determines the in- 
trinsic uncertainty on the exact time of occurrence of 
any event in the plan (Muscettola et al. 1998). The 
more precise we want the execution of a plan to be, 
the less propagation an execution algorithm should per- 
form. This is particularly important when plans are 
used in mission critical applications (Pell et al. 1997; 
Carpenter, Driscoll, & Hoyme 1994) for which the exec- 
utive must guarantee to operate within a specific time 
bound. 

Fortunately for certain classes of constraints one can 
rely on the special nature of the execution constraint 
propagation process in order to sigruficantly speed it up. 
In the rest of the paper we will focus on flexible plans 
that represent temporal information as a Simple Tem- 
poral Network (STN) (Dechter, Meiri, & Pearl 1991). 
In previous work (Muscettola, Morris, & Tsamardinos 
1998) we described a simple dispatcher, Le., an execu- 
tion algorithm that maximally localizes execution prop 
agation in STNs. We showed that any STN can be 
transformed into an equivalent one that is both dis- 
patchable and minimum. An STN is dispatchable if a 
dispatcher can generate all assignments of time to time 
variables that are consistent with the constraints in the 
STN. A dispatchable STN is minimum if it contains the 
minimum number of constraints among all dispatchable 



networks. 
The main focus in the previous paper was to  estab- 

lish the existence of the transformation to  a minimum 
dispatchable network. A simple algorithm was given 
that performs the transformation in O ( N 2 )  space and 
O ( N 3 )  time, where N is the number of variables in the 
original STN. While this is fine for problems of mod- 
erate size (hundreds of nodes), it becomes unworkable 
for large graphs (tens of thousands of nodes) that may 
occur in some applications. 

In this paper we give a new transformation algorithm 
that, when applied to an input STN with N nodes and 
E edges, uses space linear in the size of the input and 
output STNs and O ( N E  + N 2  1nN) time. For prob- 
lems in which E is roughly proportional to N the new 
algorithm can yield very big improvements over our pre- 
vious one. In particular, as discussed later in the pa- 
per, our current implementation can solve a large prob- 
lem from a commercial domain in minutes using tens 
of megabytes of memory while best estimates for the 
older algorithm yield processing times of several days 
and memory usage of tens of gigabytes. 

We also revisit the concept of minimality for a dis- 
patchable network. It may be argued that to achieve 
the best execution performance with a dispatcher, it is 
not sufficient for a dispatchable STN to have a mini- 
mum number of edges. Among all such networks it is 
possible to select a fastest dispatchable network as the 
one that also minimizes the maximum inlout degree, 
i.e., the number of temporal constraints that enter/exit 
a variable in the STN. To this end we present an addi- 
tional O ( N 2  In N )  time transformation step that when 
applied to the output of our new transformation algo- 
rithm, yields a fastest dispatchable network. 

The rest of the paper is organized as follows. The first 
section summarizes the results of our previous work and 
provides the background for the rest of the paper. The 
next section formally describes the new algorithm, while 
the succeeding sections justify the algorithm and dis- 
cuss experimental results for random and natural prob- 
lems. A further section describes the additional trans- 
formation to  yield the fastest dispatchable network, and 
the final section concludes the paper. 

Temporal Network Dispatchability 
In this section we summarize the main results of our 
previous work. See (Muscettola, Morris, & Tsamardi- 
nos 1998) for details and proofs. 

Recall that Simple Temporal Networks (Dechter, 
Meiri, & Pearl 1991) are directed graphs where each 
node is an event or t ime point (e.g., time points A and 
B) and each edge AB is marked with a bound delay 
[d, D]. The interpretation of each edge is that if TA and 
TB are the times of occurrence of A and B respectively, 
then in a consistent execution d 5 TB - TA 5 D. It 
has been shown (Dechter, Meiri, & Pearl 1991) that 
finding the ranges of execution times for each event’s 
t ime bounds, is equivalent to solving two single-source 
shortest-path problems (Cormen, Leiserson, & Rivest 

Figure 1: Distance Graph. 

1990) on a simple transformation of the STN graph. 
Figure 1 shows such a distance graph obtained from a 
simple plan with two tasks BD and CD of fixed dura- 
tions, respectively l and 2 time units, that synchronize 
at the end (event D) and must start within 10 time 
units of a time origin (event A ) .  From now on, any 
time we refer to an STN, we will mean the transformed 
distance graph. 

The simplest algorithm that can select occurrence 
times for events at execution is a dispatcher (figure 2). 
Unfortunately STNs may not always be correctly exe- 
cuted by a dispatcher. For example, since the network 
in figure 1 does not contain an explicit edge of length 1 
to synchronize C and B,  it is possible for the dispatcher 
to select B before C ,  yielding an inconsistent execution. 

The STNs that can always be correctly executed by 
a dispatcher are called dispatchable. It is always possi- 
ble to transform any STN into an equivalent dispatch- 
able STN. Trivially, it can be shown that the all-pairs 
shortest-path graph (APSP) (Cormen, Leiserson, & 
Rivest 1990) derived from the original STN is dispatch- 
able. However, this would be the largest dispatchable 
network for the problem. We are interested in find- 
ing small dispatchable networks, in fact, networks that 
contain the minimum total number of edges, or minimal 
dispatchable STNs. 

In order to find the minimal number of edges in a 
dispatchable graph, we look for edges that are domi- 
nated in APSP, i.e., whose propagations are subsumed 
by those of some other edge in all possible executions. 
It has been shown in our previous paper that, for exe- 
cution purposes, upper and lower bounds can be inde- 
pendently propagated. In fact, it is sufficient to prop- 
agate upper bounds through non-negative edges and 
lower bounds through negative edges (in the reverse di- 
rection (Dechter, Meiri, & Pearl 1991)). So, dominance 
relations between lower-bound links (lower-domination) 
can be checked separately from those between upper- 
bound links (upper-domination). It was also shown that 
removal of a dominated edge does not affect the domi- 
nance relation between other pairs of edges. 

The following fundamental filtering theorem applies. 

Theorem 1 (Triangle Rule) Consider a n  APSP 
derived from a consistent STN. 



TIHE DISPATCHING ALGORITEH: 
1. Let 

A = istart-time-point) 

s = i) 
current-time = 0 

2. Arbitrarily pick an event TP in A such 

3. Set TP’s exemtion time to current-time 
that CWrent-time is in TP’s time bound; 

and add TP to S; 
4. Propagate the tine of execution 

to its IIREDIATE !iEIGEBDFS in the distance 
graph ; 

negative edges starting from TPx have a 
destination that is already in S; 

6. Wait until current-time has advanced to 
some time between 

5. Put in A all events TPx such that all 

minilouer-bound(TP) : TP in A) 

midupper-bound(TP) : TP in A) 
and 

7. Go to 2 until every event is in S. 

Figure 2: The Dispatching Execution Controller. 

(1) A non-negative edge AC i s  upper-dominated bv 
another non-negative edge BC if and only if lABl i 
lBCl = IACI. 
’ (2) A‘ negative edge AC is lower-dominated b y  an- 
other negative edge AB if and onZy i f  lABl + lBCl = 
IACI. 

The transformation algorithm that we proposed in 
our previous work is quite simple: it applies the tri- 
angle rule in aJl possible ways to the d P S P  obtained 
from the original STN. Since this algorithm relies on 
all shortest paths being known in advance, it requires 
O(N2) space. Moreover, the time needed by the algo- 
rithm is dominated by applying the filtering rule (con- 
stant time) over all possible triples of nodes, yielding a 
time complexity of O ( N 3 ) .  

Fast Filtering Algorithm 
The algorithm sketched in the previous section pre- 
computed dPSP and then applied the dispatchability 
filtering step. However we can do better if we interleave 
filtering with the process of computing the shortest- 
paths. The algorithm we propose is a modification of 
the Johnson’s all-pairs shortest-path algorithm and its 
overall structure is described in figure 3. The references 
to lines of JOHNSON in the figure refer to the lie num- 
bering in the description of Johnson’s algorithm at page 
569 of (Cormen, Leiserson, & Rivest 1990). 

In the rest of the paper we will discuss the formal 
details of how steps 2, 3.b, 3.c and 3.d work and why. 
Here we want to give some general observations that 
will help frame the rest of the discussion. 

The first observation is that it is possible to  exploit 
to our advantage any amount of “rigidity” present in 
the temporal network. Step 2 examines the graph G 
and identifies all the sets of time points that are rigidly 

FAST-DISPAT~ABILIT-!4INI~IZATION (G) 

1. R u n  Bsllman-Ford pre-processing step 
of Johnson’s algorithm 
C lines 1-7 of JOHNSON3 

2. [RIGID COMPONENTS PROCESSING1 
Identify a l l  rigid components in G. 
For each rigid component RC; 
a) find a single node representative for 

MIN(RC) and contract C so that all 
nodes in RC are represented by HIN(RC). 

b) output the minimum dispatchable graph for RC. 
Call the contracted graph obtained after this 
step CONTR-G. 

3. [DAG DISPATCHABILITY MINIMIZATIONI 
For each node A in CONlTt-0; 
a. Run Dijkstra’s algorithm on CONTFL-C 

with A as the source [: lines 9-11 of JOIiNSONl 
Do a preliminary depth-first search 
of the predecessor graph computed at step a. 
to collect the nodes into reverse-postorder. 

Find and output all non UPPER-BOW dominated 

b. 

C . [:UPPER-DOMINAT!S ~INIMIZATIONJ 

edges with source in A; 

Find and output all non LOUER-BOUND dominated 
edges in G with source in A; 

d. CLOUER-BOUND DOHINATES MINIHIZATION] 

Figure 3: Fast Dispatch Minimization Algorithm. 

connected, i.e., such that once the execution time of one 
of them is fixed, we know exactly when all the others 
in the set must execute. Given this we will show that 
the entire set can be represented in the minimization 
process by a single node, without loss of information. 
The complexity of this step (beyond the propagation 
already required by Johnson’s Algorithm) is O(N + E), 
where N and E are the numbers of nodes and edges, 
respectively, in the input graph. This is well within the 
Johnson bounds. 

Once the graph has been contracted, step 3 uses 
single-source distance information to scan the graph 
for dominated edges in a systematic way. The key 
data structure in this process, and in the rigidity anal- 
ysis in step 2, is the predecessor graph, which is a 
subgraph of the distance graph that retains only the 
edges that participate in shortest paths from the cur- 
rent source. We will show that one important con- 
sequence of step 2 is that all predecessor graphs of 
CONTR-G are DAGS. This means the non-dominated 
edges can be found through a fixed number of depth- 
first searches in CONTR-G, making the overall cost of 
filtering O(N2 + N E )  where N and E are the numbers 
of nodes and edges in CONTR-G. This is also within 
the bounds of Johnson’s algorithm. 

Finally, we observe that the algorithm only requires 
space needed to store the input graph G ,  and the output 
minimal dispatchable graph. Moreover, steps 2.b, 3.c 
and 3.d can output the edges incrementally, so they do 
not actually need to be stored in main memory. This 



is a significant space improvement with respect to the 
previous approach, which required O(N2) space to store 
the intermediate all-airs shortest-path graph obtained 
by Johnson's Algorithm. 

The result is an algorithm that, as we shall see, makes 
it practical to apply the filtering process to enormous 
networks where it would be infeasible to use the cubic 
filtering algorithm. 

Notation 
We use upper case italics to denote nodes in a temporal 
network or distance graph. Edges and paths are de- 
noted by lower italics. The shortest-path distance from 
node X to node Y is denoted by IXY I. In the context 
of a single-source distance computation from an origin 
node S ,  the shortest-path distance from S to any node 
X is denoted by d ( X ) .  The All-Pairs Shortest-Path 
graph is denoted by APSP. We will use X Y  to denote 
an edge from X to Y in APSP. 

Predecessor Graph 
The central data structure needed for steps 2 and 3 is 
the predecessor graph. The predecessor graph is a gen- 
eralization of the predecessor tree generated by a single- 
source shortest-path algorithm (Cormen, Leiserson, & 
Rivest 1990). The predecessor tree is constructed while 
finding some shortest-path from a source node to every 
other node. The predecessor graph, on the other hand, 
concisely represents information on all shortest-paths 
from the source node. 

Definition 1 Given a consistent distance graph, the 
predecessor graph with respect to  an origin node S ,  de- 
noted by P (S ) ,  is. the subgraph defined by  the set of all 
edges on  shortest paths from S .  

The next result gives a characterization that allows 
edges to be checked locally for membership in the pre- 
decessor graph. 

Theorem 2 A n  edge f rom node X to  node Y is in 
P ( S )  if and only if 

d ( Y )  = d ( X )  + b ( X ,  Y )  

where b (X ,  Y )  is the length of the edge, and d ( X )  and 
d ( Y )  are the shortest-path distances from S to X and 
Y ,  respectively. 

Proof Let e be the edge from X to Y .  
Suppose the distance equation d ( Y )  = d ( X ) + b ( X , Y )  

holds. Then the path from S to Y that passes through 
X and along e has length equal to the shortest-path 
distance to Y .  Thus, e is on a shortest path. 

Conversely, suppose e is on a shortest path p from 
S. Without loss of generality, we may assume e is the 
last edge in p .  Then d ( Y )  = length@). Let p' be the 
part of p that does not include the final edge e. Since 
any subpath of a shortest path is itself a shortest path, 
we have d ( X )  = length(p'). It follows that d(Y)  = 
d ( X )  + b(X ,  Y ) .  0 

Corollary 2.1 Every path an P ( S )  is a shortest path. 
Moreover, the length of such a path f rom X to Y in 
p ( S )  i s  given by  d(Y) - d ( X ) .  
Proof Consider a path p from a node X to a node Y .  If 
we sum the distance equations from Theorem 2 for each 
edge in the path, we obtain d ( Y )  = d ( X )  + Z(p), where 
l (p )  is the length of p .  It follows that p is a shortest 
path, since otherwise we could derive a smaller value 
for d ( Y )  by choosing a shorter alternative to p .  It also 
follows that l ( p )  = d ( Y )  - d ( X ) .  0 

Dominance 
As noted before, we need to systematically apply the 
Triangle Rule to all triangles in APSP for which the 
triangle equality among distances applies. The follow- 
ing theorem allows us to precisely pinpoint these tri- 
angles among the O ( N 3 )  possible triangles in APSP. 
This observation is a key element in the efficiency of the 
proposed algorithm. 
Theorem 3 Let A, B ,  and C be nodes in a consistent 
distance graph. Then  the equation lACl = \AB1 + JBCJ 
holds i f  and only if there is a path f rom B to C in P(A).  
Proof 

Suppose the equation lACl = lABl + lBCl holds. 
Then there is a shortest path from A to C that passes 
through B. By definition, all the edges on this path are 
in P(A).  In particular, the subpath from B to  C is in 

Conversely, suppose P(A) includes a path from B to 
C. By Corollary 2.1, this is a shortest path and its 
length is d(C) - d(B). Thus, lBCl = d(C) - d(B)  = 
lACl - IABI. The result follows. 0 

We now construct specific tests for upper and lower 
dominance. The edges considered for elimination or 
retention in the following theorems are edges in the im- 
plicit APSP. The algorithm does not build the full 
APSP but only outputs an edge in APSP according 
to the values of the upper and lower dominance tests. 
The implicit edge AC of APSP is considered by ex- 
amining the properties of the node C with respect to 

First we derive a test for lower-dominance of negative 
edges. 
Theorem 4 A negative edge AC is lower-dominated by  
a negative edge AB i f  and only if there is a path from 
B to C in ?(A) .  
Proof Immediate by the Triangle Rule (Theorem 1) 
and Theorem 3. 0 

Note that in the case where P ( A )  is a DAG, this 
means that the edge AC associated with a negative- 
distance node C may be eliminated if and only if there 
is another negative-distance node B that precedes C. 
This suggests an algorithm that traverses the DAG, 
collecting minimal negative nodes for retention. (Al- 
though predecessor graphs are not acyclic in general, 
step 2 of the algorithm reduces them to DAGS for the 
benefit of step 3.) 

p ( A ) .  

P(A) .  



The next theorem gives a condition for determining 
whether a non-negative edge is upper-dominated. 
Theorem 5 A non-negative edge AC is upper- 
dominated if and only i j  there is a node B ,  distinct from 
A and C ,  such that IABI 5 lACl and there is a path 
from B t o  C in ?(A).  
Proof 

Suppose lABl 5 lACl and there is a path from B t o  
C in P ( A ) .  By Theorem 3,  lACl = IABlf  IBCl. It 
follows that lBCl 2 0. By the Triangle Rule, AC is 
then upper-dominated by 1BCl. 

The argument in the converse is just the reverse. 
(Note that if AC is upper-dominated by BC, then lBCl 
is non-negative by definition.) 0 

The above conditions can be used to decide in time 
O(N + E )  which edges emanating from a node A should 
be retained in the output graph. While traversing 
P ( A ) ,  the algorithm propagates two pieces of informa- 
tion. The first datum indicates whether a negative 
distance node has been encountered at a predecessor 
node. The second datum keeps track of the minimum 
distance value for all the predecessor nodes other than 
A itself. These data are used to determine whether the 
implicit edge AC corresponding to a node C is dom- 
inated. If lACl is negative, this depends on the first 
datum in the manner dictated by Theorem 4. If lACl 
is non-negative, then Theorem 5 shows that the edge is 
dominated if and only if the minimum distance value 
for the predecessors does not exceed the distance value 
for C (i.e., IACl). 

The above algorithm correctly identifies the edges to 
include in the output, provided the nodes are visited 
in an order that ensures the propagated values are cal- 
culated correctly. In the case where the predecessor 
graph is acyclic, a reverse-postorder traversal is guar- 
anteed to visit all ancestors before a given node. In the 
case where the predecessor graph is not initially a DAG, 
we will see that the strongly-connected components can 
be effectively contracted to single points, resulting in a 
DAG. This is considered in the next section. 

Identifying and Using Rigid 
Components 

An important concept for our analysis concerns a situ- 
ation where two nodes have a connection with no s l d .  
More formally, two points X and Y are rigidly-related 
if in the distance graph we have l X Y l +  IYXI = 0. 

It is easy to verify that, given a consistent distance 
graph, the property of being rigidly-related determines 
an equivalence relation. We call each equivalence class 
a rigid component (Rc). We will see that constructing 
a dispatchable graph can be simplified if these can be 
identified; in that case the problem can be reduced to 
one where each RC is contracted to a single point. 

Identifying Rigid Components 
Before considering the contraction process in detail, we 
address the issue of how to  identify each RC. For this, 

we offer the following result. 

Theorem 6 Given a consistent distance graph, and a 
single-source propagation from an  arbitrary node S that 
reaches every node in the graph, each RC of the dis- 
tance graph coincides with a strongly-connected compo- 
nent (Cormen, Leiserson, & Rivest 1990) of the prede- 
cessor graph P (S )  (and vice versa). 
Proof: Suppose X and Y are rigidly-related. Consider 
a shortest path from the source to X .  This can be 
extended by a shortest path to Y and then back again 
to X .  Since l X Y l +  ( Y X I  = 0, this is also a shortest 
path to X. Thus, the predecessor graph includes a path 
from X to Y and vice versa, so X and Y are in the same 
strongly-connected component. 

Conversely, suppose X and Y are in the same 
strongly-connected component of the predecessor 
graph. Then there is a path from X to Y in P(S) .  
By Corollary 2.1, lXYl  = d ( Y )  - d ( X ) .  Similarly, 
lYXl = d ( X )  - d ( Y ) .  It follows that X and Y are 
rigidly-related. 0 

The theorem states that we can find all Rc subgraphs 
by doing a single-source propagation from a suitable 
starting point in the distance graph. Since Johnson’s 
Algorithm requires an initial run of Bellrnan-Ford to set 
up a “potential-function” value at every node, it is con- 
venient to use this to determine the strongly-connected 
ccmpments and hence RC subgraphs. There is a well- 
known algorithm (Cormen, Leiserson, & Rivest 1990) 
for computing strongly-connected components (SCCs) 
that runs in time linear in the number of edges. This 
has two parts, an initial depth-first search to collect the 
nodes in reverse-postorder, and a secondary traversal to 
trace out each SCC. For our purposes, it is necessary 
to  do some further processing on every SCC. It is con- 
venient to piggy-back this on the part that traces out 
the SCC. 

Rigid Component Contraction 
In order to contract a Rc to a singlepoint for further 
processing, it is necessary to choose some point in the 
RC as a representative or leader. The algorithm selects 
a minimum point for this purpose, that is, a node X 
such that d ( X )  is minimum over the RC, where d ( X )  
is the distance from the origin node of the single-source 
propagation. 

Once a leader is selected, some further issues arise. 
To prepare the 1u: for contraction, we need to modify 
the input graph so that all incoming and outgoing edges 
of the RC are replaced by equivalent edges to/from the 
leader. This is accomplished by appropriately modify- 
ing the edge lengths. Second, in order to justlfy the 
contraction, we need to show that the RC can be rep- 
resented by the leader as far as output edges are con- 
cerned. We do this by demonstrating that potential 
output edges to/from the interior of the Rc are domi- 
nated by those to/from the leader. There will also be 
edges in the output that correspond to internal edges of 
the Rc. These are identified and collected prior to the 
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contraction. This step can be accomplished by consider- 
ing the RC in isolation, and simply consists of arranging 
the RC nodes in a doubly-linked chain. 

Rigid Component Edge Rearrangement 
We now consider the preparation step that rearranges 
the input graph by redirecting the outgoing and incom- 
ing edges of each RC to the leader node. 

Theorem 7 Suppose’ X and Y are rigidly-related with 
( X Y l  = b. Then (1) an  edge Y Z  of length u is equiva- 
lent to an  edge X Z  of length u + b, and (2) an edge ZY 
of length v is equivalent to  an edge Z X  of length v - b. 
Proof: The given rigid relation corresponds to the 
equation Ty = Tx + b. In its presence, the inequal- 
ity Tz - Ty 5 u is equivalent to TZ - Tx < u + b. A 
similar argument works for (2). 0 

Notice that if two nodes in the RC are connected 
to the same node Z outside the RC, then the theo- 
rem provides two replacement inequalities of the form 
TZ - TX 5 u l  and Tz - Tx 5 212. In this case, one 
of the inequalities is subsumed, and we need only re- 
tain the edge corresponding to TZ - TX < min(u1, u2). 
Thus, the replacement process allows us to recognize 
and remove some logically redundant edges in the dis- 
tance graph. 

After the edge replacement, the only connection the 
RC has to the rest of the graph is through the leader 
node. 

Rigid Component Edge Elimination 
In this section we prove dominance properties for edges 
entering or exiting nodes in a RC. In particular we see 
that all edges that start or end with an “interior’) node 
are dominated. An interior node is a node in RC other 
than the leader (minimum mode). 

Lemma 1 Suppose L and A belong to the same RC, 
and B is any other node. Then 1.4BI = 1,4LI + lLBl 
and lBAl = lBL(+ ILAI. 
Proof: 

From the properties of shortest-path graphs, the tri- 
angle inequalities lABl 5 IAL1 + (LBl and lLBl _< 
(LA1 + lAB( must hold. The second inequality can be 
rewritten as (AB(  >_ (LB(  - (LA(.  Since lLA( = -JAL/, 
we have (AB1 >_ lLBl + IALI. Combining this with the 
first inequality gives (AB1 = [ALl + lLBl 

The proof of the second condition is similar. 0 
The following result permits the elimination from the 

output of edges to/from interior nodes of an RC. The 
proof requires an assumption that there are no zero- 
related pairs of nodes in the distance graph. (Two nodes 
X and Y are zero-related if l X Y l  = l Y X l  = 0.) This 
is actually not a significant restriction because zero- 
related nodes must be executed simultaneously, and so 
they may be collapsed to a single node. The system de- 
scribed in this paper detects zero-related nodes during 
the RC identification phase and automatically collapses 
them. 

Theorem 8 Assume a consistent distance graph with 
no zero-related pairs. Suppose L and A are distinct 
nodes in a rigid component, where L is the leader of 
the Rc, and suppose B is a node n o t  in the RC. Then 
the edges AB and B A  are always dominated. 

Proof: 
We will consider only AB. The dominance proof for 

B A  is analogous. By lemma 1, we have lABl = lALl+ 
JLB). We distinguish two cases, depending on whether 
]AB1 is negative or non-negative. 

Suppose first that lABl is negative. Note that lALl is 
also negative (assuming there are no zero-related pairs) 
since L is the minimum node of the RC. Since (AB(  = 
lALl + ILBI, the Tkiangle Rule (Theorem 1) allows us 
to conclude (AB1 is lower-dominated by (ALI. 

Now suppose lAB( is non-negative. Since lABl = 
(ALI + lLBl and lALl is negative, it follows that lLBl 
is non-negative. Then lLBl upper-dominates /AB1 by 
the Triangle Rule. 0 

We have shown that output edges to and from non- 
leader nodes of the RC to the rest of the graph are 
dominated, and so may be eliminated from the final 
output. Edges in the output graph that are entirely 
within the RC can be generated independently of the 
rest of the graph, and may be dumped immediately. 
(One valid arrangement consists of edges that connect 
the nodes of the RC in a doubly-linked chain.) Thus, 
the non-leader nodes play no essential role in further 
processing of the input graph, and so may be deleted. 
The effect is the same as contracting the RC to a single 
node. (Note, however, that this may entail an arbitrary 
choice of which edges to eliminate in cases of mutual 
dominance. We will see in a later section that there 
may be reason to redistribute some of the unfiltered 
edges to the RC interior as a postprocessing step.) 

Consequences of Contraction 
An obvious benefit of the RC contraction process is 
that it may reduce the size of the network, but this is 
not its primary purpose. Because of the equivalence of 
rigid components and strongly-connected components, 
removal of the former will also eliminate the latter. 
Thus, subsequently determined predecessor graphs are 
acyclic (DAGS) This facilitates dominance identifica- 
tion. For example, reverse-postorder traversals can be 
used to ensure that parents are visited before children in 
descents through the predecessor graph. These traver- 
sals require only linear time (in the number of edges). 

Another consequence is that the dominance relations 
are simplified by eliminating mutual-dominating edges. 
To see this we need the following result. 
Theorem 9 (1) Suppose AC and BC are two non- 
negative edges in APSP. Then  AC and BC mutually 
dominate each other i f  and only i f  A and B are rigidly- 
related. 

(2) Suppose AC and AB  are two negative edges in 
the APSP. Then AC and A B  mutually dominate each 
other i f  and only i f  B and C are rigidly-related. 



257 
1025 
4097 

I 

Grid-SWide family data 
257 1 768 I 32 I 745.6 1 21.8 I 1.13 

768 16 744.8 12 1.18 
3072 32 2997.4 22.8 29.66 
12288 64 12010 45.4 878.64 

I 1025 I 3072 1 128 I 2982.5 I 90.8 I 18.57 1 

4097 I 12288 8 12028.4 5.8 

4097 1 12288 1 512 I 11905.4 I 377.4 I 302.13 
Grid-SLong family data 
257 I 768 1 8  I 746.2 1 5.2 I 1.08 

297.22 
1 1025 I 3072 I 8 I 3002.2 { 5.8 I 17.17 I 

257 2166 12 570 4 3.33 
1025 9944 12 2311.8 4.2 165.06 
4097 40904 12 9235.8 5 12272.7 

Nodes 

61 
63 
42 
85 

Input Graph Output Graph 
Edges Deg. #RC Edges Deg. Time 

133 24 37 106 18 0.02 
135 26 35 104 17 0.02 
84 11 28 64 11 0.01 
194 48 46 153 27 0.03 

59487 192790 1151 I 7111 190733 4104 2230 

Table 2: Data from natural plans. 

The proof is omitted for brevity, but is an easy conse 
quence of combining the triangle conditions associated 
with the mutual dominance relations. The theorem 
shows that mutually dominating edges imply nontrivial 
rigid components. Thus, in a graph where the RC sub- 
graphs are contracted, the dominance relation becomes 
asymmetric. This removes any danger of inadvertently 
eliminating both edges in a mutually-dominating pair. 

Experimental Results 
The algorithm was implemented in Lisp and the ex- 
periments were run on an Ultra-2 Sparc. We experi- 
mented with five natural temporal plans as well as 60 
randomly generated ones. Four out of the five natural 
plans were generated by the planner/scheduler of the 
Remote Agent control architecture (Pel1 et d. 1997) 
and were relatively small, averaging about 60 nodes. 
The fifth plan was taken from an an avionics processor 
schedule for a commercial aircraft provided by Honey- 
well (Carpenter, Driscoll, & H o p e  1994) and was much 
larger, having about 60,000 nodes. 

For the generation of the random networks we used 
the same code as in (Cherkassky, Goldberg, & Radzik 
1996), where a variety of shortest paths algorithms are 
evaluated on a number of different families of randomly 
generated networks. We chose the four families of net- 
works that most approximate STNs found in natural 
plans: Grid-SSquare, Grid-SWide, Grid-SLong, and 

Grid-NHard. For every family and every different size 
of the initial network we generated 5 network instances. 
The averages for a number of different statistics are re- 
ported in table 1. The initials in tables 1 and 2 stand 
for: Nodes, the number of nodes in the input and out- 
put graphs; Edges, the number of edges; Degree, the 
maximum out-degree; Time, the time in seconds for 
the filtering algorithm to run; and #RC, the number 
of rigid components in the input graph. All statistics 
are within 15% of the reported average. 

n o m  the results of tables 1 and 2 we observe that the 
number of edges in the output graph is much smaller 
than the worst case corresponding to the APSP, which 
has N ( N  - 1) directed edges. In fact, in our experi- 
ments, the output graph was slightly smaller than the 
input graph-an indication of some redundancy in the 
latter. 

A second observation is that the performance of the 
algorithm is greatly improved relatively to the old cubic 
algorithm. A 60,000 nodes network, such as the one 
displayed in table 2, would take at least an estimated 
48.7 days to be filtered (counting only memory accesses, 
assuming an extremely fast memory cycle of 5ns) and 
would use about 14.14 GBytes of memory (assuming 4 
bytes per edge). The new algorithm filtered the network 
in about 37 minutes using 25.3 MBytes of memory. Out 
of these only 204.7 KBytes are used for data structures 
other than the input graph. 

Minimizing the Outdegree 
The foregoing sections of this paper have addressed the 
issue of producing a dispatchable network with a min- 
imum number of edges. However, the time needed for 
propagation by the dispatching controller (Step 4 in 
Figure 2) depends on the indegree and outdegree of the 
node, i.e., the number of edges to or from from the 
node. Thus, to optimize the Real-Time execution guar- 
antee we need to minimize the mazimun indegree and 
outdegree in the network. In this section, we briefly 
sketch how this can be done for the outdegree within 
the framework developed in this paper. A similar anal- 
ysis can be used to minimize the maximum indegree. 

Out of all the edge-minimal dispatchable networks, 
we seek one that minimizes the maximum outdegree. 
(Notice that we need only consider the edgeminimal 
dispatchable networks. If a dispatchable network has 
a small maximum outdegree but does not have a mini- 
mum number of edges, we can eliminate edges from it 
until it is edge-minimal.) The different edge-minimal 
networks correspond to different choices of which edge 
to  eliminate in cases of mutual dominance. Theorem 9 
shows that mutual dominance is associated with the 
rigid components. Within the framework of the Fast- 
Filtering algorithm, we can ensure minimality in terms 
of maximum outdegree by judiciously choosing which 
edges to keep among those outgoing from the nodes in 
each RC. 

Consider an RC with leader L. The algorithm as 
presented resolves mutual dominance in a way that as- 



signs to L all outgoing edges from the RC (in the fi- 
nal output graph). To assure minimality of maximum 
outdegree, we need instead to redistribute those out- 
edges as evenly as possible among the nodes of the RC. 
The redistribution actually involves choosing alternate 
members of mutual dominating pairs, but we visualize 
it as “moving” the out-edges from the minimum node 
to the other nodes of the RC. An examination of the 
mutual dominance conditions associated with an RC 
shows that only non-negative out-edges may be moved, 
and they may only be moved over the range in which 
they remain non-negative. During the move algorithm 
a number of internal nodes of W will be “poorest,” i.e., 
will have a minimum number of out-edges. It is easy 
to see that a greedy algorithm that moves edges with 
the shortest ranges first, and moves them to one of the 
currently “poorest” nodes will provide an optimal dis- 
tribution. Since the range depends on the edge length, 
this requires sorting the list of out-edges according to 
length. Finding a “poorest” node involves searching the 
RC within the allowable range. Adopting conservative 
upper bounds for these operations, the complexity for 
the redistribution is xi(& log Ei + Ei * Ki) where Ei is 
the number of out-edges from the leader, and Ki is the 
number of nodes, of the i-th W in an enumeration of 
all RC subgraphs. Note that E, < N and Ci Ki = N ,  
where N is the total number of nodes. Thus, an up- 
per bound an the complexity is given by O(N2 log N ) ,  
which fits within the bound of Johnson’s Algorithm. 

Conclusion 
We have presented a sophisticated algorithm l?F63F- 
mulating temporal plans so that they may be executed 
with local propagation. With linear space and time 
complexity equivalent to Johnson’s Algorithm, this is 
a substantial improvement over the previous simpler 
quadratic space and cubic time algorithm. 
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